265 research outputs found

    When does right functional hemispheric lateralization arise? Evidence from preterm infants

    Get PDF
    In recent years, magnetic resonance imaging (MRI) has allowed researchers to individuate an earlier morphological development of the right hemisphere compared to the left hemisphere before birth. Anatomical asymmetry, however, does not necessarily mean functional asymmetry and whether the anatomical differences between hemispheres at this early age are paralleled by functional specializations is still unknown. Here we show electrophysiological evidence of an early functional right lateralization for pitch processing arising by 30 gestational weeks, not before, in preterm newborns

    Superior parietal cortex and the attention to delayed intention: An rTMS study.

    Get PDF
    This study aimed to investigate whether the superior parietal cortex is causally involved in PM and, if so, what is its functional role. We applied repetitive transcranial magnetic stimulation (rTMS) to the left and right superior parietal cortex, and we evaluated the TMS effects on two different PM tasks that required to direct the attention towards either the external stimuli (\u2018Monitoring-load\u2019 task) or the intention in memory (\u2018Retrospective-load\u2019 task). rTMS of left parietal cortex produced a facilitation of PM performance in both tasks. This was coupled by slower responses to the ongoing activity, for left and right parietal stimulation, but selectively in the \u2018Retrospective-load\u2019 condition. The present results suggest that superior parietal cortex is causally involved in biasing top-down attentional resources between the external, ongoing stimuli and the internal, PM intentions. The possible physiological mechanisms underlying the TMS-related improvement in PM performance are discussed

    Value and efficacy of transcranial direct current stimulation in the rehabilitation of neurocognitive disorders: A critical review since 2000.

    Get PDF
    open3siNon-invasive brain stimulation techniques, including transcranial direct current stimulation (t-DCS) have been used in the rehabilitation of cognitive function in a spectrum of neurological disorders. The present review outlines methodological communalities and differences of t-DCS procedures in neurocognitive rehabilitation. We consider the efficacy of tDCS for the management of specific cognitive deficits in four main neurological disorders by providing a critical analysis of recent studies that have used t-DCS to improve cognition in patients with Parkinson’s Disease, Alzheimer’s Disease, Hemi-spatial Neglect and Aphasia. The evidence from this innovative approach to cognitive rehabilitation suggests that tDCS can influence cognition. However, the results show a high variability between studies both on the methodological approach adopted and the cognitive functions aspects. The review also focuses both on methodological issues such as technical aspects of the stimulation ( electrodes position and dimension; current intensity; duration of protocol) and on the inclusion of appropriate assessment tools for cognition. A further aspect considered is the best timing to administer tDCS: before, during after cognitive rehabilitation. We conclude that more studies with shared methodology are needed to have a better understanding of the efficacy of tDCS as a new tool for rehabilitation of cognitive disorders in a range of neurological disordersopenCappon, D; Jahanshahi, M; Bisiacchi, PCappon, Davide; Jahanshahi, M; Bisiacchi, Patrizi

    Spatiotemporal Neurodynamics Underlying Internally and Externally Driven Temporal Prediction: A High Spatial Resolution ERP Study

    Get PDF
    Temporal prediction (TP) is a flexible and dynamic cognitive ability. Depending on the internal or external nature of information exploited to generate TP, distinct cognitive and brain mechanisms are engaged with the same final goal of reducing uncertainty about the future. In this study, we investigated the specific brain mechanisms involved in internally and externally driven TP. To this end, we employed an experimental paradigm purposely designed to elicit and compare externally and internally driven TP and a combined approach based on the application of a distributed source reconstruction modeling on a high spatial resolution electrophysiological data array. Specific spatiotemporal ERP signatures were identified, with significant modulation of contingent negative variation and frontal late sustained positivity in external and internal TP contexts, respectively. These different electrophysiological patterns were supported by the engagement of distinct neural networks, including a left sensorimotor and a prefrontal circuit for externally and internally driven TP, respectively

    TACIT INTEGRATION AND REFERENTIAL STRUCTURE IN THE LANGUAGE COMPREHENSION OF APHASICS AND NORMALS

    No full text
    Aphasics, brain damaged patients with no language deficit, neurologically intact elderly subjects and university undergraduates matched pictures to sentences having compelling tacit implications (e.g. the sentence The fox grabs the hen strongly invites one to assume that the fox will eat the hen). All groups made, for the same sentences, qualitatively similar referential errors consisting in choosing a tacit implication picture. Two auxiliary experiments using the same target sentences in other interpretive situations permitted ruling out the possibility that these errors were due to the putative intrinsic semantic properties of the sentences, showing that the sentences which were most liable to elicit integrative error varied from task to task. These results are interpreted within the conceptual framework which posits that reliable directions for interpretation are couched by the speaker in the very structure of his utterances (the utterance's referential structure) providing the hearer with means to restructure the relevant personal knowledge integrated into the interpretive process in accordance with the speaker's communicative intent. The determination of the referential structure (RSD) of utterances thus seems critical to their correct or, more precisely, conventional interpretation, and, along with the tacit integration of relevant sources of personal knowledge, constitutes the principal cognitive device enabling us to understand each other. But this device appears to be easily corruptible. It is suggested that many errors made by aphasics in language interpretation are due to a failure to follow all referential instructions, but that qualitatively similar failures also occur in normal subjects, though to a lesser degree. Language interpretation is a fallible process and aphasic errors provide remarkable clues for the understanding of its subtle referential mechanisms

    Effects of cue focality on the neural mechanisms of prospective memory: A meta-analysis of neuroimaging studies

    Get PDF
    Remembering to execute pre-defined intentions at the appropriate time in the future is typically referred to as Prospective Memory (PM). Studies of PM showed that distinct cognitive processes underlie the execution of delayed intentions depending on whether the cue associated with such intentions is focal to ongoing activity processing or not (i.e., cue focality). The present activation likelihood estimation (ALE) meta-analysis revealed several differences in brain activity as a function of focality of the PM cue. The retrieval of intention is supported mainly by left anterior prefrontal cortex (Brodmann Area, BA 10) in nonfocal tasks, and by cerebellum and ventral parietal regions in focal tasks. Furthermore, the precuneus showed increased activation during the maintenance phase of intentions compared to the retrieval phase in nonfocal tasks, whereas the inferior parietal lobule showed increased activation during the retrieval of intention compared to maintenance phase in the focal tasks. Finally, the retrieval of intention relies more on the activity in anterior cingulate cortex for nonfocal tasks, and on posterior cingulate cortex for focal tasks. Such focality-related pattern of activations suggests that prospective remembering is mediated mainly by top-down and stimulus-independent processes in nonfocal tasks, whereas by more automatic, bottom-up, processes in focal tasks

    It\u2019s a Matter of Mind! Cognitive Functioning Predicts the Athletic Performance in Ultra- Marathon Runners

    Get PDF
    The present study was aimed at exploring the influence of cognitive processes on performance in ultra-marathon runners, providing an overview of the cognitive aspects that characterize outstanding runners. Thirty runners were administered a battery of computerized tests right before their participation in an ultra-marathon. Then, they were split according to the race rank into two groups (i.e., faster runners and slower runners) and their cognitive performance was compared. Faster runners outperformed slower runners in trials requiring motor inhibition and were more effective at performing two tasks together, successfully suppressing the activation of the information for one of the tasks when was not relevant. Furthermore, slower runners took longer to remember to execute pre-defined actions associated with emotional stimuli when such stimuli were presented. These findings suggest that cognitive factors play a key role in running an ultra-marathon. Indeed, if compared with slower runners, faster runners seem to have a better inhibitory control, showing superior ability not only to inhibit motor response but also to suppress processing of irrelevant information. Their cognitive performance also appears to be less influenced by emotional stimuli. This research opens new directions towards understanding which kinds of cognitive and emotional factors can discriminate talented runners from less outstanding runners

    Neonatal Cortical Auditory Evoked Potentials Are Affected by Clinical Conditions Occurring in Early Prematurity

    Get PDF
    Purpose: Cortical auditory evoked potentials may serve as an early indicator of developmental problems in the auditory cortex. The aim of the study was to determine the effect on neonatal cortical auditory processing of clinical conditions occurring in early prematurity. Methods: Sixty-seven preterm infants born at 29 weeks mean gestational age (range, 23\u201334 weeks) were recorded at a mean postconception age of 35 weeks, before discharge from the third level neonatal intensive care unit. The average of 330 responses to standard 1000 Hz pure tones delivered in an oddball paradigm was recorded at frontal location. Data of 45 of 67 recruited premature infants were available for analysis. Mean amplitudes calculated from the data points of 30 milliseconds centered on P1 and N2 peaks in the waveforms of each subject were measured. The effect of perinatal clinical factors on cortical auditory evoked responses was evaluated. Results: The amplitude of P1 component was significantly lower in infants with bronco-pulmonary dysplasia (P \ubc 0.004) and retinopathy of prematurity (P \ubc 0.03). The multivariate analysis, done to evaluate the relative weight of gestational age and bronco-pulmonary dysplasia and/or retinopathy of prematurity on cortical auditory evoked potentials components, showed an effect of clinical factors on P1 (P \ubc 0.005) and of gestational age on N2 (P \ubc 0.02). Conclusions: Cortical auditory processing seems to be influenced by clinical conditions complicating extremely preterm birth

    Intentional Binding effect in children: insights from a new paradigm

    Get PDF
    open3Intentional binding (IB) refers to the temporal attraction between a voluntary action and its sensory consequence. Since its discovery in 2002, it has been considered to be a valid implicit measure of sense of agency (SoA), since it only occurs in the context of voluntary actions. The vast majority of studies considering IB have recruited young adults as participants, while neglecting possible age related differences. The aim of the present work is to study the development of IB in 10-year-old children. In place of Libet's classical clock method, we decided to implement a new and more suitable paradigm in order to study IB, since children could have some difficulties in dealing with reading clocks. A stream of unpredictable letters was therefore used participants had to remember which letter was on the screen when they made a voluntary action, heard a sound, or felt their right index finger moved down passively. In Experiment I, a group of young adults was tested in order to replicate the IB effect with this new paradigm. In Experiment II, the same paradigm was then administered to children in order to investigate whether such an effect has already emerged at this age. The data from Experiment I showed the presence of the IB effect in adults. However, Experiment II demonstrated a clear reduction of IB. The comparison of the two groups revealed that the young adult group differed from the children, showing a significantly stronger linkage between actions and their consequences. The results indicate a developmental trend in the IB effect. This finding is discussed in light of the maturation process of the frontal cortical network.restrictedpartially_openCAVAZZANA A; BEGLIOMINI C; BISIACCHI PCavazzana, Annachiara; Begliomini, Chiara; Bisiacchi, Patrizi

    Young adults and multisensory time perception: Visual and auditory pathways in comparison

    Get PDF
    : The brain continuously encodes information about time, but how sensorial channels interact to achieve a stable representation of such ubiquitous information still needs to be determined. According to recent research, children show a potential interference in multisensory conditions, leading to a trade-off between two senses (sight and audition) when considering time-perception tasks. This study aimed to examine how healthy young adults behave when performing a time-perception task. In Experiment 1, we tested the effects of temporary sensory deprivation on both visual and auditory senses in a group of young adults. In Experiment 2, we compared the temporal performances of young adults in the auditory modality with those of two samples of children (sighted and sighted but blindfolded) selected from a previous study. Statistically significant results emerged when comparing the two pathways: young adults overestimated and showed a higher sensitivity to time in the auditory modality compared to the visual modality. Restricting visual and auditory input did not affect their time sensitivity. Moreover, children were more accurate at estimating time than young adults after a transient visual deprivation. This implies that as we mature, sensory deprivation does not constitute a benefit to time perception, and supports the hypothesis of a calibration process between senses with age. However, more research is needed to determine how this calibration process affects the developmental trajectories of time perception
    • …
    corecore